A investigação científica na área de física de partículas elementares ganhou recentemente um poderoso aliado, o Grande Colisor de Hádrons. Nesse laboratório serão realizadas diversas experiências com o objetivo de verificar a existência de novas partículas elementares, além de determinar com maior precisão propriedades físicas importantes de partículas já conhecidas. Uma experiência relativamente simples feita nesse laboratório consiste em utilizar um equipamento chamado de câmara de neblina. Nessa câmara há um vapor supersaturado, e quando partículas passam por ele ocorre a condensação do vapor de água na forma de bolhas, que mostram então as trajetórias descritas pelas partículas. Aplicando-se um campo magnético B no local, é possível determinar grandezas relevantes, como carga ou massa das partículas. Uma dessas experiências é ilustrada na figura ao lado. Uma partícula de carga elétrica Q desconhecida entra numa câmara de neblina com uma velocidade inicial v horizontal e no plano da página. O campo magnético B é uniforme, perpendicular ao plano da página e está entrando nesta. Essa partícula fica sujeita ao campo B e move-se em MRU até um certo instante em que ela sofre um decaimento radioativo, transformando-se em duas partículas, de massas ma e mb, cargas Qa e Qb, que descrevem as trajetórias circulares de raios Ra e Rb mostradas na figura. As duas partículas iniciam o movimento circular com a mesma velocidade v da partícula original e esse decaimento segue a lei de conservação das cargas.
a) Determine o sinal da carga Q da partícula que entrou no campo magnético, justificando a resposta.
b) Determine os sinais das cargas das partículas que descrevem as trajetórias circulares de raios Ra e Rb, e a relação entre as cargas Qa e Qb, justificando as respostas.
TEMPO NA QUESTÃO
00:00:00
Física Geral
Total de Questões: ?
Respondidas: ? (0,00%)
Certas: ? (0,00%)
Erradas: ? (0,00%)
Somente usuários cadastrados!